Skip to main content

Core Type Transformer

 

Core Type Transformer: 

What is it?


There are two main types of transformerswhich can be categorized by the shape of the magnetic core. These are core type transformers, and shell-type transformers(and less commonly, air core transformers). We shall discuss here the core type transformer.

The core of single phase core type transformer is a single window core. This means there are two limbs as shown in the figure below.
transformer core
Both LV and HV windings are wrapped on both limbs. Normally both windings are divided into parts and one part of both windings are wrapped on one limb and other parts or halves are wrapped on the other limb of the core.
core type transformer
The LV winding is first wrapped on the core limb surface with sufficient insulation between the core body and winding. Then the LV winding, HV winding is wrapped with sufficient insulation between LV winding and HV winding. In this way, both limbs are covered with LV then HV windings.

This arrangement makes the transformer economical. Since the potential difference between grounded core and HV winding is maximum so insulation cost between them is also maximum. To avoid this insulation cost the LV winding is placed nearer to the core.

In smaller size core type transformer the core of square or rectangular cross-section is used. Because it is easier to construct laminated square or rectangular cross-sectional core. It is not also hard to wrap winding on that square or rectangular cross-sectional core limbs. This is a cost-effective process of manufacturing smaller transformers.

But in case of large transformers, it is not easy to wrap the winding conductor in square or rectangular forms. Also to optimise the use of copper conductor, the round cylindrical shaped windings are the best choice. But round cylindrical winding on a square cross-sectional core limb causes a significant amount of unused space in between winding and core. This is not a good approach for large transformers as the size of the transformer matters. To reduce these unused spaces, stepped cross-sectional core is utilised where laminations of different dimensions are carefully staged to form nearly circular cross-section. The cross section may be one-stepped, two-stepped, and multi-stepped depending on the size, design and economical optimization of the transformer.

The main disadvantage of core type transformer is the leakage flux. The leakage flux in this arrangement is more than that of shell type transformer. It affects the performance and efficiency of the transformer but still this arrangement is best approach for large sized transformers because of easier access to the windings during maintenance. If any permanent damage occurs in the inner winding, it can be rectified by removing outer winding only which is not so smooth in the case of shell type transformer.

For three phase transformer, there are three limbs in the core. Each limb carriers LV and HV windings of one phase of the three phase system. 

Comments

Popular posts from this blog

Transformer Construction

Transformer Construction The three main parts of a transformer: Primary Winding of Transformer Magnetic Core of Transformer Secondary Winding of Transformer Primary Winding of Transformer Which produces magnetic flux when it is connected to an electrical source . Magnetic Core of Transformer The magnetic flux produced by the primary winding, that will pass through this low reluctance path linked with secondary winding and create a closed magnetic circuit . Secondary Winding of Transformer The flux, produced by primary winding, passes through the core, will link with the secondary winding. This winding also wounds on the same core and gives the desired output of the transformer .

Emf Equation of Transformer,Turns Ratio of Transformer

EMF Equation of Transformer Turns Voltage Transformation Ratio of Transformer  Emf Equation of Transformer EMF Equation of transformer can be established in a very easy way. Actually in electrical power transformer , one alternating electrical source is applied to the primary winding and due to this, magnetizing current flowing through the primary winding which produces alternating flux in the core of transformer . This flux links with both primary and secondary windings. As this flux is alternating in nature, there must be a rate of change of flux. According to Faraday’s law of electromagnetic induction if any coil or conductor links with any changing flux, there must be an induced emf in it. As the current source to primary is sinusoidal, the flux induced by it will be also sinusoidal. Hence, the function of flux may be considered as a sine function. Mathematically, the derivative of that function will give a function for the rate of change of flux linkage with respect to t...

Transformer working principle and Definition

What is a Transformer? A  transformer  is defined as a  passive electrical device  that transfers electrical energy from one circuit to another through the process of  electromagnetic induction . It is most commonly used to increase (‘step up’) or decrease (‘step down’)  voltage  levels between circuits. Working Principle of Transformer The working principle of a transformer is very simple. Mutual induction between two or more windings (also known as coils) allows for electrical energy to be transferred between circuits. This principle is explained in further detail below. Transformer Theory Say you have one winding (also known as a coil) which is supplied by an alternating electrical source. The alternating current through the winding produces a continually changing and alternating flux that surrounds the winding. If another winding is brought close to this winding, some portion of this alternating flux will link with the second winding. As this flu...